Photonics (Aug 2022)

Parallel Distribution Matcher Base on CCDM for Probabilistic Amplitude Shaping in Coherent Optical Fiber Communication

  • Yao Zhang,
  • Hongxiang Wang,
  • Yuefeng Ji,
  • Yu Zhang

DOI
https://doi.org/10.3390/photonics9090604
Journal volume & issue
Vol. 9, no. 9
p. 604

Abstract

Read online

As a typical high-order modulation format optimization technology, constellation probability shaping enhances generalized mutual information (GMI) by optimizing the probability distribution of each constellation point of the signal. It can improve the transmission capacity of the same order M Quadrature Amplitude Modulation (QAM) signal under the condition of limited average transmission power, and further narrow the gap with the Shannon limit capacity. The distribution matcher is a key part of constellation probability shaping since it not only ensures the one-to-one mapping of input and output sequences but also realizes the function of probability shaping. The constant composition distribution matcher (CCDM) structure is a widely utilized distribution matcher in the current probability shaping technology. Based on CCDM, a parallel distribution matcher scheme is proposed in this paper. It has a lower rate loss than CCDM for short output lengths (n is less than 100). Block lengths can be reduced by up to 30% with the same rate loss. When the GMI is the same as for the probability shaping (PS) 64QAM signal using CCDM, the OSNR required by the PS-64QAM signal using this scheme can be enhanced by 0.12dB, the block length can be reduced by 40%, and the transmission distance in a standard single-mode fiber can be slightly extended.

Keywords