Environmental Research Letters (Jan 2024)
Water scarcity challenges across urban regions with expanding irrigation
Abstract
Irrigation expansion is often posed as a promising option to enhance food security. Here, we assess the influence of expansion of irrigation, primarily in rural areas of the contiguous United States (CONUS), on the intensification and spatial proliferation of freshwater scarcity. Results show rain-fed to irrigation-fed (RFtoIF) transition will result in an additional 169.6 million hectares or 22% of the total CONUS land area facing moderate or severe water scarcity. Analysis of just the 53 large urban clusters with 146 million residents shows that the transition will result in 97 million urban population facing water scarcity for at least one month per year on average versus 82 million before the irrigation expansion. Notably, none of the six large urban regions facing an increase in scarcity with RFtoIF transition are located in arid regions in part because the magnitude of impact is dependent on multiple factors including local water demand, abstractions in the river upstream, and the buffering capacity of ancillary water sources to cities. For these reasons, areas with higher population and industrialization also generally experience a relatively smaller change in scarcity than regions with lower water demand. While the exact magnitude of impacts are subject to simulation uncertainties despite efforts to exercise due diligence, the study unambiguously underscores the need for strategies aimed at boosting crop productivity to incorporate the effects on water availability throughout the entire extent of the flow networks, instead of solely focusing on the local level. The results further highlight that if irrigation expansion is poorly managed, it may increase urban water scarcity, thus also possibly increasing the likelihood of water conflict between urban and rural areas.
Keywords