Heliyon (May 2024)
Portable spectroscopy, digital imaging colorimetry and multivariate statistical tools in contaminant identification: A case study of mint (Mentha) and basil (Ocimum basilicum)
Abstract
The advent of portable Fourier-Transform Infrared (FTIR) and Raman spectrometers has revolutionized analysis capabilities, presenting the possibility of on-site contaminant identification without the need for specialized laboratory settings. Compared to laboratory instrumentation, portable spectroscopy is more prone to noise, and appropriate spectral processing procedures need to be established. This paper introduces a comprehensive methodology that integrates acquisition techniques, spectral analysis, and mathematical tools necessary for utilizing handheld spectrometers to diagnose plant contamination. It focuses on determining the efficacy of handheld FTIR, Raman spectroscopy, and digital imaging for detecting contaminants in two food plants, Basil (Ocimum basilicum) and Mint (Mentha). The study examines the impact of three pollutants: iron (II) sulphate (FeSO4), zinc (II) sulphate (ZnSO4), and copper (II) sulphate (CuSO4), on these plants, but also the necessary amount of measurements to spot the pollutants' effects. Measurements were conducted at the start, after 24 hours, and after 48 hours of exposure, on both fresh and dried plant leaves, as well as in solution. Spectral effects of each of the pollutants were identified with the use of multivariate statistical process control techniques. With the help of the developed methodologies, researchers can identify in-situ contaminant effects, exposure times and run diagnostics directly on the leaf both in alive and dried plants.