Frontiers in Earth Science (Aug 2024)
Maximising the value of hyperspectral drill core scanning through real-time processing and analysis
Abstract
Hyperspectral imaging is gaining widespread use in the resource sector, with applications in mineral exploration, geometallurgy and mine mapping. However, the sheer size of many hyperspectral datasets (>1 Tb) and associated correction, visualisation and analysis challenges can limit the integration of this technique into time-critical exploration and mining workflows. In this contribution, we propose and demonstrate a novel open-source workflow for rapidly processing hyperspectral data acquired on exploration drillcores. The resulting products are adaptable to the varied needs of geologists, geophysicists and geological engineers, facilitating better integration of hyperspectral data during decision making. These tools are applied to process hyperspectral data of 6.4 km of exploration drill cores from Stonepark (Ireland), Collinstown (Ireland) and Spremberg (Germany). The results are presented via an open-source web-viewing platform that we have developed to facilitate easy on and off-site access to hyperspectral data and its derivatives. We suggest that maximum value can be extracted from hyperspectral data if it is acquired shortly after drilling and processed on-site in real time, so that results can be quickly validated and used to inform time-critical decisions on sample selection, geological interpretation (logging) and drillhole continuation or termination. This timeliness and accessibility is key to ensure rapid data availability for decision makers during mineral exploration and exploitation. Finally, we discuss several remaining challenges that limit the real-time integration of hyperspectral drill core scanning data, and explore some opportunities that may arise as these rich datasets become more widely collected.
Keywords