Influence of Spray Nozzle Operating Parameters on the Fogging Process Implemented to Prevent the Spread of SARS-CoV-2 Virus
Waldemar Fedak,
Roman Ulbrich,
Grzegorz Ligus,
Marek Wasilewski,
Szymon Kołodziej,
Barbara Wasilewska,
Marek Ochowiak,
Sylwia Włodarczak,
Andżelika Krupińska,
Ivan Pavlenko
Affiliations
Waldemar Fedak
Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland
Roman Ulbrich
Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland
Grzegorz Ligus
Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland
Marek Wasilewski
Department of Safety Engineering and Technical Systems, Faculty of Production Engineering and Logistics, Opole University of Technology, 45-758 Opole, Poland
Szymon Kołodziej
Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland
Barbara Wasilewska
Department of Management and Production Engineering, Faculty of Production Engineering and Logistics, Opole University of Technology, 45-758 Opole, Poland
Marek Ochowiak
Department of Chemical Engineering and Equipment, Poznan University of Technology, 60-965 Poznan, Poland
Sylwia Włodarczak
Department of Chemical Engineering and Equipment, Poznan University of Technology, 60-965 Poznan, Poland
Andżelika Krupińska
Department of Chemical Engineering and Equipment, Poznan University of Technology, 60-965 Poznan, Poland
Ivan Pavlenko
Department of Computational Mechanics Named after V. Martsynkovsky, Faculty of Technical Systems and Energy Efficient Technologies, Sumy State University, 40007 Sumy, Ukraine
This article reports the results of a study into the effect of operating parameters on the occurrence and course of gas–liquid two-phase phenomena during the fogging process carried out with the use of a conical pressure-swirl nozzle. Four alternatives of the stub regulation angles and four values of pressure of air supply to the nozzle were tested as part of the current research. The range of the investigated variables was common for the operation of fumigators used to prevent the spread of SARS-CoV-2 virus. The liquid flow rate (weighting method), the field of velocity, and turbulent flow intensity factor, as well as velocity profiles over the section of 1 m from the nozzle were determined using the particle image velocimetry (PIV) technique. The obtained results were correlated with the measurements of the diameters of spray droplets using the laser light scattering (LLS) technique. On the basis of this research, a dependence between the nozzle parameters and the spray cone pattern was identified in terms of dynamics and droplet diameter distribution. As a result of the research, a wide range of parameters were identified in which the fogging process was carried out in a stable and repeatable manner. There were exceptions to this rule only in the cases when there was a deficiency of the liquid necessary to generate a two-phase mixture.