Frontiers in Neuroscience (Dec 2023)

Glucose-sensitive hypothalamic nuclei traced through functional magnetic resonance imaging

  • Jorge Manuel,
  • Jorge Manuel,
  • Eva Halbe,
  • Eva Halbe,
  • Ann Charlotte Ewald,
  • Alex Hoff,
  • Jens Jordan,
  • Jens Jordan,
  • Jens Tank,
  • Karsten Heusser,
  • Darius A. Gerlach

DOI
https://doi.org/10.3389/fnins.2023.1297197
Journal volume & issue
Vol. 17

Abstract

Read online

IntroductionHypothalamic glucose-sensitive neural circuits, which regulate energy metabolism and can contribute to diseases such as obesity and type 2 diabetes, have been difficult to study in humans. We developed an approach to assess hypothalamic functional connectivity changes during glucose loading using functional magnetic resonance imaging (fMRI).MethodsTo do so, we conducted oral glucose tolerance tests while acquiring functional images before, and 10 and 45 min after glucose ingestion in a healthy male and cross-sectionally in 20 healthy participants on two different diets.ResultsAt group level, 39 fMRI sessions were not sufficient to detect glucose-mediated connectivity changes. However, 10 repeated sessions in a single subject revealed significant intrinsic functional connectivity increases 45 min after glucose intake in the arcuate, paraventricular, and dorsomedial nuclei, as well as in the posterior hypothalamic area, median eminence, and mammillary bodies.DiscussionOur methodology allowed to outline glucose-sensitive hypothalamic pathways in a single human being and holds promise in delineating individual pathophysiology mechanisms in patients with dysglycemia.

Keywords