Mathematics (Mar 2024)

On Lagrangian Grassmannian Variety and Plücker Matrices

  • Jesús Carrillo-Pacheco

DOI
https://doi.org/10.3390/math12060858
Journal volume & issue
Vol. 12, no. 6
p. 858

Abstract

Read online

The Plücker matrix BL(n,E) of the Lagrangian Grassmannian L(n,E), is determined by the linear envelope ⟨L(n,E)⟩ of the Lagrangian Grassmannian. The linear envelope ⟨L(n,E)⟩ is the intersection of linear relations of Plücker of Lagrangian Grassmannian, defined here. The Plücker matrix BL(n,E) is a direct sum of the incidence matrix of the configuration of subsets. These matrices determine the isotropy index rn and rn-atlas which are invariants associated with the symplectic vector space E.

Keywords