Scientific Reports (May 2024)

Analysis of Soret and Dufour effects on radiative heat transfer in hybrid bioconvective flow of carbon nanotubes

  • Azad Hussain,
  • Saira Raiz,
  • Ali Hassan,
  • Ahmed M. Hassan,
  • Hanen Karamti,
  • Gabriella Bognár

DOI
https://doi.org/10.1038/s41598-024-62647-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Numerous heat transfer applications, such as heat exchangers, solar trough collectors, and fields including food processing, material research, and aerospace engineering, utilize hybrid nanofluids. Compared to conventional fluids, hybrid nanofluids exhibit significantly enhanced thermal conductivity. The aim of this work is to explore flow and heat transmission features under of magneto-hydrodynamic bioconvective flow of carbon nanotubes over the stretched surface with Dufour and Soret effects. Additionally, comparative dynamics of the carbon nanotubes (SWCMT − MWCNT/C2H6O2 with SWCMT − MWCNT/C2H6O2 − H2O) flow using the Prandtl fluid model in the presence of thermal radiation and motile microorganisms has been investigated. Novel feature Additionally, the focus is also to examine the presence of microorganisms in mixture base hybrid nanofluid. To examine heat transfer features of Prandtl hybrid nanofluid over the stretched surface convective heating is taken into consideration while modeling the boundary conditions. Suitable similarity transform has been employed to convert dimensional flow governing equations into dimensionless equations and solution of the problem has been obtained using effective, accurate and time saving bvp-4c technique in MATLAB. Velocity, temperature, concentration and microorganisms profiles have been demonstrated graphically under varying impact of various dimensionless parameters such as inclined magnetization, mixed convection, Dufour effect, Soret effect, thermal radiation effect, and bioconvection lewis number. It has been observed that raising values of magnetization (0.5 ≤ M ≤ 4), mixed convection (0.01 ≤ λ ≤ 0.05) and inclination angle (0° ≤ α ≤ 180°) enhance fluid motion rapidly in Ethylene glycol based Prandtl hybrid nanofluid (SWCMT − MWCNT/C2H6O2) when compared with mixture base working fluid of carbon nanotubes SWCMT − MWCNT/C2H6O2 − H2O). Raising thermal radiation (0.1 ≤ Rd ≤ 1.7) and Dufour number (0.1 ≤ Du ≤ 0.19) values improves temperature profile. Moreover, a good agreement has been found between the current outcome and existing literature for skin friction outcomes.

Keywords