BMC Plant Biology (Jun 2022)
Fluoride mitigates aluminum-toxicity in barley: morpho-physiological responses and biochemical mechanisms
Abstract
Abstract Background To our knowledge, the role of exogenous fluoride (F–) on aluminum (Al)-stress mitigation in plants has not been investigated yet. In this experiment, barley (Hordeum vulgaris) seedlings were exposed to excessive Al3+ concentrations (aluminum chloride, 0.5, 1.0, 2.0, 3.0, and 4.0 mM) with and without fluoride (0.025% sodium fluoride) to explore the possible roles of fluoride on the alleviation of Al-toxicity. Results Overall, Al-stress caused inhibition of growth and the production of photosynthetic pigments. Principal component analysis showed that the growth inhibitory effects were driven by increased oxidative stress and the interruption of water balance in barley under Al-stress. Fluoride priming, on the other hand, enhanced growth traits, chlorophyll a and b content, as well as invigorated the protection against oxidative damage by enhancing overall antioxidant capacity. Fluoride also improved osmotic balance by protecting the plasma membrane. Fluoride reduced endogenous Al3+ content, restored Al-induced inhibition of glutathione-S-transferase, and increased the contents of phytochelatins and metallothioneins, suggesting that fluoride reduced Al3+ uptake and improved chelation of Al3+. Conclusions Aluminum chloride-induced harmful effects are abridged by sodium fluoride on barely via enhancing antioxidative responses, the chelation mechanism causing reduction of Al uptake and accumulation of barely tissues. Advanced investigations are necessary to uncover the putative mechanisms underpinning fluoride-induced Al-stress tolerance in barley and other economically significant crops, where our results might serve as a solid reference.
Keywords