World Electric Vehicle Journal (Apr 2024)

Power Signal Analysis for Early Fault Detection in Brushless DC Motor Drivers Based on the Hilbert–Huang Transform

  • David Marcos-Andrade,
  • Francisco Beltran-Carbajal,
  • Eduardo Esquivel-Cruz,
  • Ivan Rivas-Cambero,
  • Hossam A. Gabbar,
  • Alexis Castelan-Perez

DOI
https://doi.org/10.3390/wevj15040159
Journal volume & issue
Vol. 15, no. 4
p. 159

Abstract

Read online

Brushless DC machines have demonstrated significant advantages in electrical engineering by eliminating commutators and brushes. Every year, these machines increase their presence in transportation applications. In this sense, early fault identification in these systems, specifically in the electronic speed controllers, is relevant for correct device operation. In this context, the techniques reported in the literature for fault identification based on the Hilbert–Huang transform have shown efficiency in electrical systems. This manuscript proposes a novel technique for early fault identification in electronic speed controllers based on the Hilbert–Huang transform algorithm. Initially, currents from the device are captured with non-invasive sensors in a time window during motor operation. Subsequently, the signals are processed to obtain pertinent information about amplitudes and frequencies using the Hilbert–Huang transform, focusing on fundamental components. Then, estimated parameters are evaluated by computing the error between signals. The existing electrical norms of a balanced system are used to identify a healthy or damaged driver. Through amplitude and frequency error analysis between three-phase signals, early faults caused by system imbalances such as current increasing, torque reduction, and speed reduction are detected. The proposed technique is implemented through data acquisition devices at different voltage conditions and then physical signals are evaluated offline through several simulations in the Matlab environment. The method’s robustness against signal variations is highlighted, as each intrinsic mode function serves as a component representation of the signal and instantaneous frequency computation provides resilience against these variations. Two study cases are conducted in different conditions to validate this technique. The experimental results demonstrate the effectiveness of the proposed method in identifying early faults in brushless DC motor drivers. This study provides data from each power line within the electronic speed controller to detect early faults and extend different approaches, contributing to addressing early failures in speed controllers while expanding beyond the conventional focus on motor failure analysis.

Keywords