Opuscula Mathematica (Jan 2019)
Infinitely many solutions for some nonlinear supercritical problems with break of symmetry
Abstract
In this paper, we prove the existence of infinitely many weak bounded solutions of the nonlinear elliptic problem \[\begin{cases}-\operatorname{div}(a(x,u,\nabla u))+A_t(x,u,\nabla u) = g(x,u)+h(x)&\text{in }\Omega,\\ u=0 &\text{on }\partial\Omega,\end{cases}\] where \(\Omega \subset \mathbb{R}^N\) is an open bounded domain, \(N\geq 3\), and \(A(x,t,\xi)\), \(g(x,t)\), \(h(x)\) are given functions, with \(A_t = \frac{\partial A}{\partial t}\), \(a = \nabla_{\xi} A\), such that \(A(x,\cdot,\cdot)\) is even and \(g(x,\cdot)\) is odd. To this aim, we use variational arguments and the Rabinowitz's perturbation method which is adapted to our setting and exploits a weak version of the Cerami-Palais-Smale condition. Furthermore, if \(A(x,t,\xi)\) grows fast enough with respect to \(t\), then the nonlinear term related to \(g(x,t)\) may have also a supercritical growth.
Keywords