Journal of CO2 Utilization (Sep 2024)

Experimental evaluation of electrochemically mediated amine regeneration integrated with amine thermal swing for CO2 capture at optimized desorption temperatures

  • Amirhossein Hasanzadeh,
  • Ata Chitsaz,
  • Morteza Khalilian,
  • Marc A. Rosen,
  • Ali Saberi Mehr

Journal volume & issue
Vol. 87
p. 102922

Abstract

Read online

In the present study, the integration of electrochemically mediated amine regeneration (EMAR) with amine thermal swing process is investigated as a novel method for CO2 capture, utilizing experimental practical data. The aim is to increase the absorption-desorption temperature difference in order to improve the energy efficiency of the capture process and hamper the amine degradation issue at high desorption temperatures. A comprehensive experimental procedure is presented, and an experimental process setup is designed and constructed. As the main novelty of the study a special heating-cooling subsystem is incorporated with the base EMAR process in order to devise a combined electrochemical-thermal system. The performance of the system is evaluated at sequential incremental desorption temperatures while the absorption temperature is kept constant. Relevant data, including the desorbed CO2 flow, absorbed CO2 flow, stream points temperature, and cell voltage are collected. Based on the data collected, two performance parameters are calculated, including normalized carbon separation work, and CO2 desorption density. Based on these performance parameters the system's capability is assessed, and the optimal desorption temperature is ultimately selected. The presented electrochemical-thermal CO2 separation system, operating with a chloride salt system, demonstrates its best energetics performance at a desorption temperature of 44 °C, resulting in a normalized capture work of 95.2 kJ/molCO2. Under these optimal conditions, the cell's average voltage is measured to be 0.37 V, and the CO2 desorption density is determined to be 0.71 l.min−1.m−2.

Keywords