Journal of King Saud University: Computer and Information Sciences (Oct 2024)
GCNT: Identify influential seed set effectively in social networks by integrating graph convolutional networks with graph transformers
Abstract
Exploring effective and efficient strategies for identifying influential nodes from social networks as seeds to promote the propagation of influence remains a crucial challenge in the field of influence maximization (IM), which has attracted significant research efforts. Deep learning-based approaches have been adopted as an alternative promising solution to the IM problem. However, a robust model that captures the associations between network information and node influence needs to be investigated, while concurrently considering the effects of the overlapped influence on training labels. To address these challenges, a GCNT model, which integrates Graph Convolutional Networks with Graph Transformers, is introduced in this paper to capture the intricate relationships among the topology of the network, node attributes, and node influence effectively. Furthermore, an innovative method called Greedy-LIE is proposed to generate labels to alleviate the issue of overlapped influence spread. Moreover, a Mask mechanism specially tailored for the IM problem is presented along with an input embedding balancing strategy. The effectiveness of the GCNT model is demonstrated through comprehensive experiments conducted on six real-world networks, and the model shows its competitive performance in terms of both influence maximization and computational efficiency over state-of-the-art methods.