Frontiers in Microbiology (May 2015)

Simplifying Microbial Electrosynthesis Reactor Design

  • Cloelle G.S. Giddings,
  • Kelly eNevin,
  • Trevor eWoodward,
  • Derek R Lovley,
  • Caitlyn Shea Butler

DOI
https://doi.org/10.3389/fmicb.2015.00468
Journal volume & issue
Vol. 6

Abstract

Read online

Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata, which reduces carbon dioxide to acetate. In traditional ‘H-cell’ reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a poteniostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

Keywords