Buildings (Feb 2024)

A Novel Dual Self-Centering Friction Damper for Seismic Responses Control of Steel Frame

  • Juntong Qu,
  • Xinyue Liu,
  • Yuxiang Bai,
  • Wenbin Wang,
  • Yuheng Li,
  • Junxiang Pu,
  • Chunlei Zhou

DOI
https://doi.org/10.3390/buildings14020407
Journal volume & issue
Vol. 14, no. 2
p. 407

Abstract

Read online

Due to their weight, the seismic response control of buildings needs a large-scale damper. To reduce the consumption of shape memory alloys (SMAs), this study proposed a dual self-centering pattern accomplished by the coil springs and SMA, which could drive the energy dissipation device to recenter. Combined with the friction energy dissipation device (FD), the dual self-centering friction damper (D-SCFD) was designed, and the motivation and parameters were described. The mechanical properties of D-SCFD, including the simplified D-SCFD mechanical model, theoretical index calculations of recentering, and energy dissipation performance, were then investigated. The seismic response mitigation of the steel frame adopting the D-SCFDs under consecutive strong earthquakes was finally analyzed. The results showed that a decrease in the consumption of SMA by the dual self-centering pattern was feasible, especially in the case of low demand for the recentering performance. Reducing the D-SCFD’s recentering performance hardly affected the steel frame’s residual inter-story drift ratios when the residual deformation rate was less than 50%, which can help strengthen the controls on the steel frame’s peak seismic responses. It is recommended to utilize the D-SCFD with not too high a recentering performance to mitigate the seismic response of the structure.

Keywords