Applied Sciences (Apr 2024)

Ensemble Empirical Mode Decomposition Granger Causality Test Dynamic Graph Attention Transformer Network: Integrating Transformer and Graph Neural Network Models for Multi-Sensor Cross-Temporal Granularity Water Demand Forecasting

  • Wenhong Wu,
  • Yunkai Kang

DOI
https://doi.org/10.3390/app14083428
Journal volume & issue
Vol. 14, no. 8
p. 3428

Abstract

Read online

Accurate water demand forecasting is crucial for optimizing the strategies across multiple water sources. This paper proposes the Ensemble Empirical Mode Decomposition Granger causality test Dynamic Graph Attention Transformer Network (EG-DGATN) for multi-sensor cross-temporal granularity water demand forecasting, which combines the Transformer and Graph Neural Networks. It employs the EEMD–Granger test to delineate the interconnections among sensors and extracts the spatiotemporal features within the causal domain by stacking dynamical graph spatiotemporal attention layers. The experimental results demonstrate that compared to baseline models, the EG-DGATN improves the MAPE metrics by 2.12%, 4.33%, and 6.32% in forecasting intervals of 15 min, 45 min, and 90 min, respectively. The model achieves an R2 score of 0.97, indicating outstanding predictive accuracy and exceptional explanatory power for the target variable. This research highlights significant potential applications in predictive tasks within smart water management systems.

Keywords