Heliyon (May 2024)

Does cardiac impairment develop in ischemic renal surgery in rats depending on the reperfusion time?

  • Priyanka N. Prem,
  • Gino A. Kurian

Journal volume & issue
Vol. 10, no. 10
p. e31389

Abstract

Read online

Background: Renal dysfunction is known to cause heart failure. However, renal dysfunction associated with kidney surgeries (mediated by reperfusion injury) that affects the cardiac physiological function, especially during the recovery and repair phase of renal surgery is unknown. Method: Male Wistar rats (238 ± 18 g) were subjected to renal sham and ischemia-reperfusion (IR-bilateral clamping for 15 min/45 min and reperfusion for 24 h/48 h/7 days) surgeries. At the end of the experiment, the heart was isolated from the animal (to exclude neurohormonal influence) and perfused for 60 min with Krebs-Hanseleit buffer to study the physiological changes. Result: Renal artery bilateral occlusion for 45 min that creates ischemia, followed by 24 h of reperfusion did not impart any significant cardiac physiological functional decline but 48 h of reperfusion exhibited a significant decline in cardiac hemodynamic indices (Rate pressure product in x104 mmHg*beats/min: Sham- 3.53 ± 0.19, I45_R48–2.82 ± 0.21) with mild tissue injury. However, 7 days of reperfusion inflict significant physiological decline (Rate pressure product in x104 mmHg*beats/min - 2.5 ± 0.14) and tissue injury (Injury score- 4 ± 1.5) in isolated rat hearts. Interestingly, when the renal artery bilateral occlusion time was reduced to 15 min the changes in the hearts were negligible after 7 days. Cellular level exploration reveals a positive relation between functional deterioration of mitochondria and elevated mitochondrial oxidative stress and inflammation with cardiac physiological decline and injury linked with renal ischemia-reperfusion surgery. Conclusion: Cardiac functional decline associated with renal surgery is manifested during renal repair or recovery. This decline depends on cardiac mitochondrial health, which is negatively influenced by the renal IR mediators and kidney function.

Keywords