PLoS Neglected Tropical Diseases (Sep 2019)

Meta-taxonomic analysis of prokaryotic and eukaryotic gut flora in stool samples from visceral leishmaniasis cases and endemic controls in Bihar State India.

  • Rachael Lappan,
  • Cajsa Classon,
  • Shashi Kumar,
  • Om Prakash Singh,
  • Ricardo V de Almeida,
  • Jaya Chakravarty,
  • Poonam Kumari,
  • Sangeeta Kansal,
  • Shyam Sundar,
  • Jenefer M Blackwell

DOI
https://doi.org/10.1371/journal.pntd.0007444
Journal volume & issue
Vol. 13, no. 9
p. e0007444

Abstract

Read online

Visceral leishmaniasis (VL) caused by Leishmania donovani remains of public health concern in rural India. Those at risk of VL are also at risk of other neglected tropical diseases (NTDs) including soil transmitted helminths. Intestinal helminths are potent regulators of host immune responses sometimes mediated through cross-talk with gut microbiota. We evaluate a meta-taxonomic approach to determine the composition of prokaryotic and eukaryotic gut microflora using amplicon-based sequencing of 16S ribosomal RNA (16S rRNA) and 18S rRNA gene regions. The most abundant bacterial taxa identified in faecal samples from Bihar State India were Prevotella (37.1%), Faecalibacterium (11.3%), Escherichia-Shigella (9.1%), Alloprevotella (4.5%), Bacteroides (4.1%), Ruminococcaceae UCG-002 (1.6%), and Bifidobacterium (1.5%). Eukaryotic taxa identified (excluding plant genera) included Blastocystis (57.9%; Order: Stramenopiles), Dientamoeba (12.1%; Family: Tritrichomonadea), Pentatrichomonas (10.1%; Family: Trichomonodea), Entamoeba (3.5%; Family: Entamoebida), Ascaridida (0.8%; Family: Chromodorea; concordant with Ascaris by microscopy), Rhabditida (0.8%; Family: Chromodorea; concordant with Strongyloides), and Cyclophyllidea (0.2%; Order: Eucestoda; concordant with Hymenolepis). Overall alpha (Shannon's, Faith's and Pielou's indices) and beta (Bray-Curtis dissimilarity statistic; weighted UniFrac distances) diversity of taxa did not differ significantly by age, sex, geographic subdistrict, or VL case (N = 23) versus endemic control (EC; N = 23) status. However, taxon-specific associations occurred: (i) Ruminococcaceae UCG- 014 and Gastranaerophilales_uncultured bacterium were enriched in EC compared to VL cases; (ii) Pentatrichomonas was more abundant in VL cases than in EC, whereas the reverse occurred for Entamoeba. Across the cohort, high Escherichia-Shigella was associated with reduced bacterial diversity, while high Blastocystis was associated with high bacterial diversity and low Escherichia-Shigella. Individuals with high Blastocystis had low Bacteroidaceae and high Clostridiales vadin BB60 whereas the reverse held true for low Blastocystis. This scoping study provides useful baseline data upon which to develop a broader analysis of pathogenic enteric microflora and their influence on gut microbial health and NTDs generally.