Toxins (Dec 2023)

Optimised Fermentation Production of Radiolabelled Ochratoxin A by <i>Aspergillus ochraceus</i> with Maximum <sup>14</sup>C in the Pentaketide Moiety for Exploring Its Rat Renal Toxicology

  • Peter Mantle

DOI
https://doi.org/10.3390/toxins16010008
Journal volume & issue
Vol. 16, no. 1
p. 8

Abstract

Read online

In the context of the mysterious Balkan endemic nephropathy of the 1900s, and the discovery in the 1960s of the potent mycotoxin ochratoxin A, experimental research projects sought to explore any inter-relationship. Experimental lifetime administration of the toxin to male rats had revealed renal DNA adducts with the toxin, correlated with renal tumours, confirmation of which required molecular evidence. Consequently, production of 14C-ochratoxin A of a high specific radioactivity was required, practical biosynthetic detail of which had not previously been published. A fermentation study of Aspergillus ochraceous was carried out during 2002 for a European project, to select for the production of high-quality 14C-ochratoxin A, necessarily exploring for the maximum diversion of 14C-sodium acetate into the pentaketide portion of mycotoxin. Experimentation necessarily had to optimise the competitive context of fungal growth dynamics and addition of the biosynthetic precursor in the early days of shaken-flask fermentation before adding the radiolabelled precursor. From optimal fermentation, 50 mg of the 14C ochratoxin A was supplied within a European project for DNA adduct experimentation, but that proved negative as subsequently published. Experimental description of the radiolabelled ochratoxin A production was later made in a doctoral thesis, but is first publicised here. Further review of the literature reveals an explanation for the published failure to confirm rat DNA/ochratoxin A adduct formation, for which further experimentation is now recommended.

Keywords