Journal of Applied and Computational Mechanics (Apr 2022)

Haar Wavelet Method for Solving High-Order Differential Equations with Multi-Point Boundary Conditions

  • Mohammad Heydari,
  • Zakieh Avazzadeh,
  • Narges Hosseinzadeh

DOI
https://doi.org/10.22055/jacm.2020.31860.1935
Journal volume & issue
Vol. 8, no. 2
pp. 528 – 544

Abstract

Read online

In This paper, the developed Haar wavelet method for solving boundary value problems is described. As known, the orthogonal Haar basis functions are applied widely for solving initial value problems, but In this study, the method for solving systems of ODEs associated with multipoint boundary conditions is generalized in separated or non-separated forms. In this technique, a system of high-order boundary value problems of ordinary differential equations is reduced to a system of algebraic equations. The experimental results confirm the computational efficiency and simplicity of the proposed method. Also, the implementation of the method for solving the systems arising in the real world for phenomena in fluid mechanics and construction engineering approves the applicability of the approach for a variety of problems.

Keywords