智能科学与技术学报 (Mar 2024)

基于人在回路的纵向联邦学习模型可解释性研究

  • 李晓欢, 郑钧柏, 康嘉文, 叶进, 陈倩

DOI
https://doi.org/10.11959/j.issn.2096-6652.202345
Journal volume & issue
Vol. 6, no. 1
pp. 64 – 75

Abstract

Read online

纵向联邦学习(vertical federated learning,VFL)常用于高风险场景中的跨领域数据共享,用户需要理解并信任模型决策以推动模型应用。现有研究主要关注VFL中可解释性与隐私之间的权衡,未充分满足用户对模型建立信任及调优的需求。为此,提出了一种基于人在回路(human-in-the-loop,HITL)的纵向联邦学习解释方法(explainable vertical federated learning based on human-in-the-loop,XVFL-HITL),通过构建分布式HITL结构将用户反馈纳入VFL的基于Shapley值的解释方法中,利用各参与方的知识校正训练数据来提高模型性能。进一步,考虑到隐私问题,基于Shapley值的可加性原理,将非当前参与方的特征贡献值整合为一个整体展示,从而有效保护了各参与方的特征隐私。实验结果表明,在基准数据上,XVFL-HITL的解释结果具有有效性,并保护了用户的特征隐私;同时,XVFL-HITL对比VFL-Random和直接使用SHAP的VFL-Shapley进行特征选择的方法,模型准确率分别提高了约14%和11%。

Keywords