Mehran University Research Journal of Engineering and Technology (Jan 2021)

Physiochemical Characterization and Potential of Synthesis Gas Production from Rubber Wood Biomass by Using Downdraft Gasifier

  • Syed Haseeb Sultan,
  • Arkom Palamanit,
  • Kua-Anan Techato,
  • Muhammad Amin,
  • Khurshid Ahmed Baloch

DOI
https://doi.org/10.22581/muet1982.2101.01
Journal volume & issue
Vol. 40, no. 1
pp. 1 – 15

Abstract

Read online

Bioenergy has gained great interest in the recent years for being environmentally friendly and renewable energy resource. Southern Thailand is well-known for agro-industry including rubber tree plantations and processing, which provide biomass that could be applied to produce bioenergy. Thus, this study aimed to investigate the energy potential of Rubber Wood Chips (RWC), Rubber Wood Pellets (RWP), Unburned Char (UBC) from rubber wood, blended RWC:UBC (50:50%) and blended RWP:UBC (50:50%). The physiochemical properties including bulk density, proximate composition, ultimate composition, heating value, Thermogravimetric Analysis (TGA), and lignocellulose content were determined for the biomass samples. The thermochemical conversion of biomass to syngas was performed using a downdraft gasifier operated at equivalence ratio 0.3. The results showed that the biomass was rich in carbon (content ranging from 44.77 to 58.54%) making it suitable for use as a solid fuel for gasification or combustion. The moisture contents of the biomass samples were below 10%. The contents of volatile matter in RWC and RWP were 74.40 and 75.40%, respectively. The UBC had a high fixed carbon content (50.60%) and comparatively low volatile matter (19%). The bulk densities of RWC, RWP and UBC were 193, 555 and 177 (kg/m3 ), respectively. The TGA showed the maximum weight loss of RWC and RWP around 400 °C, but this was at 800 °C for UBC. The higher heating values of RWC, RWP and UBC were 17.8 MJ/kg, 17.4 MJ/kg and 19.3 MJ/kg, respectively. The RWC and RWP had high cellulose and hemicellulose contents while UBC was rich in lignin. The syngas obtained from any of these biomass samples was mainly CO (10.81-22.67%) and CH4 (0.06-3.16%) with the lower heating value ranging from 2.78 to 4.72 MJ/Nm3 . These results indicate that rubber wood biomass in various forms has relatively high potential for bioenergy applications via gasification, and it can help to support the renewable energy sector in Thailand.