Computation (Apr 2024)
The Study of Molecules and Processes in Solution: An Overview of Questions, Approaches and Applications
Abstract
Many industrial processes, several natural processes involving non-living matter, and all the processes occurring within living organisms take place in solution. This means that the molecules playing active roles in the processes are present within another medium, called solvent. The solute molecules are surrounded by solvent molecules and interact with them. Understanding the nature and strength of these interactions, and the way in which they modify the properties of the solute molecules, is important for a better understanding of the chemical processes occurring in solution, including possible roles of the solvent in those processes. Computational studies can provide a wealth of information on solute–solvent interactions and their effects. Two major models have been developed to this purpose: a model viewing the solvent as a polarisable continuum surrounding the solute molecule, and a model considering a certain number of explicit solvent molecules around a solute molecule. Each of them has its advantages and challenges, and one selects the model that is more suitable for the type of information desired for the specific system under consideration. These studies are important in many areas of chemistry research, from the investigation of the processes occurring within a living organism to drug design and to the design of environmentally benign solvents meant to replace less benign ones in the chemical industry, as envisaged by the green chemistry principles. The paper presents a quick overview of the modelling approaches and an overview of concrete studies, with reference to selected crucial investigation themes.
Keywords