Microorganisms (Jul 2022)

Nitrate Addition Increases the Activity of Microbial Nitrogen Removal in Freshwater Sediment

  • Min Cai,
  • Yiguo Hong,
  • Jiapeng Wu,
  • Selina Sterup Moore,
  • Teofilo Vamerali,
  • Fei Ye,
  • Yu Wang

DOI
https://doi.org/10.3390/microorganisms10071429
Journal volume & issue
Vol. 10, no. 7
p. 1429

Abstract

Read online

Denitrification and anammox occur widely in aquatic ecosystems serving vital roles in nitrogen pollution removal. However, small waterbodies are sensitive to external influences; stormwater runoff carrying nutrients and oxygen, flows into waterbodies resulting in a disruption of geochemical and microbial processes. Nonetheless, little is known about how these short-term external inputs affect the microbial processes of nitrogen removal in small waterbodies. To investigate the effects of NO3−, NH4+, dissolved oxygen (DO) and organic C on microbial nitrogen removal in pond sediments, regulation experiments have been conducted using slurry incubation experiments and 15N tracer techniques in this study. It was demonstrated the addition of NO3− (50 to 800 μmol L−1) significantly promoted denitrification rates, as expected by Michaelis-Menten kinetics. Ponds with higher NO3− concentrations in the overlying water responded more greatly to NO3− additions. Moreover, N2O production was also promoted by such an addition of NO3−. Denitrification was significantly inhibited by the elevation of DO concentration from 0 to 2 mg L−1, after which no significant increase in inhibition was observed. Denitrification rates increased when organic C was introduced. Due to the abundant NH4+ in pond sediments, the addition demonstrated little influence on nitrogen removal. Moreover, anammox rates showed no significant changes to any amendment.

Keywords