Atmospheric Measurement Techniques (Nov 2022)

Radio frequency interference detection and mitigation in the DWD C-band weather radar network

  • M. Schaper,
  • M. Frech,
  • D. Michaelis,
  • C. Hald,
  • B. Rohrdantz

DOI
https://doi.org/10.5194/amt-15-6625-2022
Journal volume & issue
Vol. 15
pp. 6625 – 6642

Abstract

Read online

C-band weather radar data are commonly compromised by interference from external sources even though weather radars are the primary and therefore privileged user of this frequency band. This is also the case for the radar network of the German Meteorological Service (Deutscher Wetterdienst, DWD). Theoretically, dynamic frequency selection (DFS) by devices operating in the C band should prevent any disturbance of the primary user. In practice, this does not always work as intended under the current regulations. As it is not possible to separate a superimposed interference signal from measured weather radar data, the protection of the frequency band is of utmost importance. Currently, the only available option is to discard the compromised portions of the radar data. Therefore, the current best course of action is to shut down radio frequency interference (RFI) sources as quickly as possible. The automated RFI detection algorithm for the German C-band weather radar network, operational since July 2017, makes use of routinely measured radar moments. Built upon data gathered since 2017, an RFI classification with respect to the severity and duration of RFI sources was first implemented in 2019. An independent verification of the RFI detection algorithm was performed by using a commercially available Wi-Fi adapter, which is directly integrated into the radar receiver. Subsequently, a mitigation workflow was implemented to efficiently identify and shut down detected RFI sources by the German Federal Network Agency (Bundesnetzagentur, BNetzA). By following this workflow with great effort, the number of persistent RFI sources has been decreasing since October 2019, while a steady increase in short-lived RFI sources over the last 5 years also exists. In total, 11 889 RFI sources have been identified from July 2017 to May 2022. Most of these (94.8 %) are such short-lived sources that an unambiguous identification by the BNetzA is, in general, not feasible. However, as stated by the C-band regulations, any non-compliant transmitter compromising the operation of a weather radar has to be shut down. This is important, as even these short-lived RFI sources negatively affect meteorological product generation.