Ultrasonics Sonochemistry (Mar 2022)
Influence of high-intensity ultrasound on physicochemical and functional properties of a guamuchil Pithecellobium dulce (Roxb.) seed protein isolate
Abstract
In this study, the influence of ultrasound on the physicochemical and functional properties of guamuchil seed protein isolate (GSPI) was investigated. The GSPI was prepared by alkaline extraction and isoelectric precipitation method followed by treating with ethanol (95%), from defatted guamuchil seed flour. GSPI suspensions (10%) were sonicated with a probe (20 kHz) at 3 power levels (200 W, 400 W, 600 W) for 15 and 30 min, in addition, to control treatment without ultrasound. Moisture content, water activity, bulk and compact densities and the L*, a* and b* color parameters of the GSPI decreased due to the ultrasound. Glutelin (61.1%) was the main protein fraction in GSPI. Results through Fourier transform infrared and fluorescence spectroscopy showed that ultrasound modified the secondary and tertiary protein structures of GSPI, which increased the surface hydrophobicity, molecular flexibility and in vitro digestibility of GSPI proteins by up to 114.8%, 57.3% and 12.5%, respectively. In addition, maximum reductions of 11.9% in particle size and 55.2% in turbidity of GSPI suspensions, as well as larger and more porous aggregates in GSPI lyophilized powders were observed by ultrasound impact. These structural and physicochemical changes had an improvement of up to 115.5% in solubility, 39.8% in oil absorption capacity, while the increases for emulsifying, foaming, gelling, flow and cohesion properties of GSPI were 87.4%, 74.2%, 40.0%, 44.4%, and 8.9%, respectively. The amelioration of the functional properties of GSPI by ultrasound could represent an alternative for its possible use as a food ingredient in industry.