Frontiers in Systems Neuroscience (Aug 2023)

From signals to music: a bottom-up approach to the structure of neuronal activity

  • Gabriel D. Noel,
  • Gabriel D. Noel,
  • Lionel E. Mugno,
  • Daniela S. Andres,
  • Daniela S. Andres

DOI
https://doi.org/10.3389/fnsys.2023.1171984
Journal volume & issue
Vol. 17

Abstract

Read online

IntroductionThe search for the “neural code” has been a fundamental quest in neuroscience, concerned with the way neurons and neuronal systems process and transmit information. However, the term “code” has been mostly used as a metaphor, seldom acknowledging the formal definitions introduced by information theory, and the contributions of linguistics and semiotics not at all. The heuristic potential of the latter was suggested by structuralism, which turned the methods and findings of linguistics to other fields of knowledge. For the study of complex communication systems, such as human language and music, the necessity of an approach that considers multilayered, nested, structured organization of symbols becomes evident. We work under the hypothesis that the neural code might be as complex as these human-made codes. To test this, we propose a bottom-up approach, constructing a symbolic logic in order to translate neuronal signals into music scores.MethodsWe recorded single cells’ activity from the rat’s globus pallidus pars interna under conditions of full alertness, blindfoldedness and environmental silence. We analyzed the signals with statistical, spectral, and complex methods, including Fast Fourier Transform, Hurst exponent and recurrence plot analysis.ResultsThe results indicated complex behavior and recurrence graphs consistent with fractality, and a Hurst exponent >0.5, evidencing temporal persistence. On the whole, these features point toward a complex behavior of the time series analyzed, also present in classical music, which upholds the hypothesis of structural similarities between music and neuronal activity. Furthermore, through our experiment we performed a comparison between music and raw neuronal activity. Our results point to the same conclusion, showing the structures of music and neuronal activity to be homologous. The scores were not only spontaneously tonal, but they exhibited structure and features normally present in human-made musical creations.DiscussionThe hypothesis of a structural homology between the neural code and the code of music holds, suggesting that some of the insights introduced by linguistic and semiotic theory might be a useful methodological resource to go beyond the limits set by metaphoric notions of “code.”

Keywords