Physical Review Research (Oct 2023)
Powerful ordered collective heat engines
Abstract
We introduce a class of stochastic engines in which the regime of units operating synchronously can boost the performance. Our approach encompasses a minimal setup composed of N interacting units placed in contact with two thermal baths and subjected to a constant driving worksource. The interplay between unit synchronization and interaction leads to an efficiency at maximum power between the Carnot η_{c} and the Curzon-Ahlborn bound η_{CA}. Moreover, these limits can be respectively saturated maximizing the efficiency, and by simultaneous optimization of power and efficiency. We show that the interplay between Ising-like interactions and a collective ordered regime is crucial to operate as a heat engine. The main system features are investigated by means of a linear analysis near equilibrium, and developing an effective discrete-state model that captures the effects of the synchronous phase. The robustness of our findings extends beyond the all-to-all interactions and paves the way for the building of promising nonequilibrium thermal machines based on ordered structures.