Department of Software and IT Engineering, École de technologie supérieure, Université du Québec, Montréal, QC, Canada
Department of Software and IT Engineering, École de technologie supérieure, Université du Québec, Montréal, QC, Canada
CNRS, UMR 8520, Département d’Opto-Acousto-Électronique (DOAE), Institut d’Électronique de Microélectronique et de Nanotechnologie (IEMN), Université Polytechnique Hauts-de-France, Valenciennes, France
Department of Software and IT Engineering, École de technologie supérieure, Université du Québec, Montréal, QC, Canada
CNRS, UMR 8520, Département d’Opto-Acousto-Électronique (DOAE), Institut d’Électronique de Microélectronique et de Nanotechnologie (IEMN), Université Polytechnique Hauts-de-France, Valenciennes, France
This paper introduces a novel deep-learning assisted video list decoding method for error-prone video transmission systems. Unlike traditional list decoding techniques, our proposed system uses a Transformer-based no-reference image quality assessment method to select the highest-scoring reconstructed video candidate after reception. Three new components are defined and used in the Transformer-assisted image quality evaluation metric: neighborhood-based patch fidelity aggregation, discriminant color texture transformation and ranking-constrained penalty loss function. We have also created our own database of non-uniformly distorted images, similar to those that might result from transmission errors, in a High Efficiency Video Coding (HEVC) context. In our specific testing context, our improved Transformer-assisted method has a decision accuracy of 100% for intra-coded image, while, for errors occurring in an inter image, it is 96%. Notably, in the few cases where a wrong choice is made, the selected candidate’s quality remains similar to the intact frame. Code: https://github.com/Yujing0926/Robust-Video-List-Decoding-Using-a-Deep-Learning-Approach.