Energies (Jan 2017)

Assessment against Experiments of Devolatilization and Char Burnout Models for the Simulation of an Aerodynamically Staged Swirled Low-NOx Pulverized Coal Burner

  • Marco Torresi,
  • Francesco Fornarelli,
  • Bernardo Fortunato,
  • Sergio Mario Camporeale,
  • Alessandro Saponaro

DOI
https://doi.org/10.3390/en10010066
Journal volume & issue
Vol. 10, no. 1
p. 66

Abstract

Read online

In the next few years, even though there will be a continuous growth of renewables and a loss of the share of fossil fuel, energy production will still be strongly dependent on fossil fuels. It is expected that coal will continue to play an important role as a primary energy source in the next few decades due to its lower cost and higher availability with respect to other fossil fuels. However, in order to improve the sustainability of energy production from fossil fuels, in terms of pollutant emissions and energy efficiency, the development of advanced investigation tools is crucial. In particular, computational fluid dynamics (CFD) simulations are needed in order to support the design process of low emission burners. Even if in the literature several combustion models can be found, the assessment of their performance against detailed experimental measurements on full-scale pulverized coal burners is lacking. In this paper, the numerical simulation of a full-scale low-NO x , aerodynamically-staged, pulverized coal burner for electric utilities tested in the 48 MW th plant at the Combustion Environment Research Centre (CCA - Centro Combustione e Ambiente) of Ansaldo Caldaie S.p.A. in Gioia del Colle (Italy) is presented. In particular, this paper is focused on both devolatilization and char burnout models. The parameters of each model have been set according to the coal characteristics without any tuning based on the experimental data. Thanks to a detailed description of the complex geometry of the actual industrial burner and, in particular, of the pulverized coal inlet distribution (considering the entire primary air duct, in order to avoid any unrealistic assumption), a correct selection of both devolatilization and char burnout models and a selection of suited parameters for the NO x modeling, accurate results have been obtained in terms of NO x formation. Since the model parameters have been evaluated a priori, the numerical approach proposed here could be suitable to be applied as a performance prediction tool in the design of pulverized coal burners.

Keywords