Applied Sciences (Mar 2023)

Effect of Spring-Mass-Damper Pedestrian Models on the Performance of Low-Frequency or Lightweight Glazed Floors

  • Chiara Bedon,
  • Filipe A. Santos

DOI
https://doi.org/10.3390/app13064023
Journal volume & issue
Vol. 13, no. 6
p. 4023

Abstract

Read online

For structural design purposes, human-induced loads on pedestrian systems can be described by several simplified (i.e., deterministic equivalent-force models) or more complex computational approaches. Among others, the Spring-Mass-Damper (SMD), Single Degree of Freedom (SDOF) model has been elaborated by several researchers to describe single pedestrians (or groups) in the form of equivalent body mass m, spring stiffness k and damping coefficient c. For all these literature SMD formulations, it is proved that the biodynamic features of walking pedestrians can be realistically reproduced, with high computational efficiency for vibration serviceability assessment of those pedestrian systems mostly sensitive to human-induced loads (i.e., with vibration frequency f1 1/130th) or low- (1/4th) mass ratio, compared to the occupant. Normal walking scenarios with frequency in the range fp = 1.5–2 Hz are taken into account for a total of 100 dynamic simulations. The quantitative comparison of typical structural performance indicators for vibration serviceability assessment (i.e., acceleration peak, RMS, CREST) shows significant sensitivity to input SMD assumptions. Most importantly, the sensitivity of structural behaviours is observed for low-frequency systems, as expected, but also for low-mass structures, which (as in the case of glazed floor solutions) can be characterized by the use of lightweight modular units with relatively high vibration frequency. As such, major attention can be required for their vibrational analysis and assessment.

Keywords