Scientific Reports (Jan 2021)

The complex case of Macaronichnus trace fossil affecting rock porosity

  • Javier Dorador,
  • Francisco J. Rodríguez-Tovar,
  • Olmo Miguez-Salas

DOI
https://doi.org/10.1038/s41598-021-81687-6
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Bioturbation is an important factor for reservoir quality due to the modification of host rock petrophysical properties (i.e., porosity, permeability, and connectivity). However, there is no predictable relationship between bioturbation and its effect on rock properties, due to the variability of the involved ichnological features. A detailed ichnological analysis is necessary to determine how bioturbation affects petrophysical properties in a bioturbated reservoir. Traditionally, ichnological features such as density, tiering, size, orientation, architecture, and fill, have been considered. However, other properties have been undervalued as is the case of lining. Here, we present a detailed study on the effects of Macaronichnus burrows, an ichnotaxon usually related to hydrocarbon exploration due to its high concentration in rock notably affecting petrophysical properties. Macaronichnus, a subhorizontal cylindrical burrow, is characterized by a well-defined and developed outer rim surrounding the tube core. Our data indicates a clear zonation in porosity according to burrow structure, with the lowest porosity in the tube core and higher values associated with the surrounded rim. This duality is determined by the tracemaker grain selective feeding activity and the consequent concentrated cementation. The organism concentrates the lighter minerals in the tube core fill during feeding, favoring post-depositional cementation during diagenesis and this results in lower porosity than the host rock. However, heavy minerals, mainly glauconite, are located in the rim, showing higher porosity. Our results support the view that ichnological analyses are essential to determine reservoir quality in bioturbated reservoirs, evidencing that other ichnological properties in addition to those traditionally considered must be evaluated.