Remote Sensing (May 2024)

Blind Edge-Retention Indicator for Assessing the Quality of Filtered (Pol)SAR Images Based on a Ratio Gradient Operator and Confidence Interval Estimation

  • Xiaoshuang Ma,
  • Le Li,
  • Gang Wang

DOI
https://doi.org/10.3390/rs16111992
Journal volume & issue
Vol. 16, no. 11
p. 1992

Abstract

Read online

Speckle reduction is a key preprocessing approach for the applications of Synthetic Aperture Radar (SAR) data. For many interpretation tasks, high-quality SAR images with a rich texture and structure information are useful. Therefore, a satisfactory SAR image filter should retain this information well after processing. Some quantitative assessment indicators have been presented to evaluate the edge-preservation capability of single-polarization SAR filters, among which the non-clean-reference-based (i.e., blind) ones are attractive. However, most of these indicators are derived based only on the basic fact that the speckle is a kind of multiplicative noise, and they do not take into account the detailed statistical distribution traits of SAR data, making the assessment not robust enough. Moreover, to our knowledge, there are no specific blind assessment indicators for fully Polarimetric SAR (PolSAR) filters up to now. In this paper, a blind assessment indicator based on an SAR Ratio Gradient Operator (RGO) and Confidence Interval Estimation (CIE) is proposed. The RGO is employed to quantify the edge gradient between two neighboring image patches in both the speckled and filtered data. A decision is then made as to whether the ratio gradient value in the filtered image is close to that in the unobserved clean image by considering the statistical traits of speckle and a CIE method. The proposed indicator is also extended to assess the PolSAR filters by transforming the polarimetric scattering matrix into a scalar which follows a Gamma distribution. Experiments on the simulated SAR dataset and three real-world SAR images acquired by ALOS-PALSAR, AirSAR, and TerraSAR-X validate the robustness and reliability of the proposed indicator.

Keywords