Sensors (Nov 2022)

An Intelligent Online Drunk Driving Detection System Based on Multi-Sensor Fusion Technology

  • Juan Liu,
  • Yang Luo,
  • Liang Ge,
  • Wen Zeng,
  • Ziyang Rao,
  • Xiaoting Xiao

DOI
https://doi.org/10.3390/s22218460
Journal volume & issue
Vol. 22, no. 21
p. 8460

Abstract

Read online

Since drunk driving poses a significant threat to road traffic safety, there is an increasing demand for the performance and dependability of online drunk driving detection devices for automobiles. However, the majority of current detection devices only contain a single sensor, resulting in a low degree of detection accuracy, erroneous judgments, and car locking. In order to solve the problem, this study firstly designed a sensor array based on the gas diffusion model and the characteristics of a car steering wheel. Secondly, the data fusion algorithm is proposed according to the data characteristics of the sensor array on the steering wheel. The support matrix is used to improve the data consistency of the single sensor data, and then the adaptive weighted fusion algorithm is used for multiple sensors. Finally, in order to verify the reliability of the system, an online intelligent detection device for drunk driving based on multi-sensor fusion was developed, and three people using different combinations of drunk driving simulation experiments were conducted. According to the test results, a drunk person in the passenger seat will not cause the system to make a drunk driving determination. When more than 50 mL of alcohol is consumed and the driver is seated in the driver’s seat, the online intelligent detection of drunk driving can accurately identify drunk driving, and the car will lock itself as soon as a real-time online voice prompt is heard. This study enhances and complements theories relating to data fusion for online automobile drunk driving detection, allowing for the online identification of drivers who have been drinking and the locking of their vehicles to prevent drunk driving. It provides technical support for enhancing the accuracy of online systems that detect drunk driving in automobiles.

Keywords