AIMS Mathematics (May 2020)

Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space

  • Zhiqian He,
  • Liangying Miao

Journal volume & issue
Vol. 5, no. 4
pp. 3840 – 3850

Abstract

Read online

In this paper, we study the uniqueness and multiplicity of positive solutions of one-dimensional prescribed mean curvature equation \begin{equation*}\left\{ \begin{array}{l} - \left({\frac{{u'}}{{\sqrt {1 - u{'^2}} }}} \right)' = \lambda f\left(u \right), \\ u\left(x \right) > 0, - 1 < x < 1, \\ u\left({ - 1} \right) = u\left(1 \right) = 0, \end{array} \right.\end{equation*} where $\lambda$ is a positive parameter. The main tool is the fixed point index in cones.

Keywords