Open Mathematics (Apr 2021)

On the regulator problem for linear systems over rings and algebras

  • Hermida-Alonso José Ángel,
  • Carriegos Miguel V.,
  • Sáez-Schwedt Andrés,
  • Sánchez-Giralda Tomás

DOI
https://doi.org/10.1515/math-2021-0002
Journal volume & issue
Vol. 19, no. 1
pp. 101 – 110

Abstract

Read online

The regulator problem is solvable for a linear dynamical system Σ\Sigma if and only if Σ\Sigma is both pole assignable and state estimable. In this case, Σ\Sigma is a canonical system (i.e., reachable and observable). When the ring RR is a field or a Noetherian total ring of fractions the converse is true. Commutative rings which have the property that the regulator problem is solvable for every canonical system (RP-rings) are characterized as the class of rings where every observable system is state estimable (SE-rings), and this class is shown to be equal to the class of rings where every reachable system is pole-assignable (PA-rings) and the dual of a canonical system is also canonical (DP-rings).

Keywords