Construction of Heterogeneous Aggregation-Induced Emission Microspheres with Enhanced Multi-Mode Information Encryption
Zhiwei Wu,
Weiqin Yu,
Fenghao Luo,
Yue Jin,
Ligou Pan,
Qianjun Deng,
Qing Wang,
Mingguang Yu
Affiliations
Zhiwei Wu
Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
Weiqin Yu
Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
Fenghao Luo
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
Yue Jin
Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
Ligou Pan
Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
Qianjun Deng
Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
Qing Wang
Laboratory of Quality & Safety Risk Assessment for Agro-Products, School of Food & Pharmaceutical Engineering, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing University, Zhaoqing 526061, China
Mingguang Yu
Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
Traditional organic light-emitting materials hinder their anti-counterfeiting application in solid state due to their aggregation-caused quenching effect. A facile and straightforward method was reported to introduce AIE molecules into microspheres and manipulate different reaction parameters to prepare AIE microspheres with different morphologies. In this strategy, fluorescent microspheres with spherical, apple-shaped, and hemoglobin-like types were synthesized. Driven by the photocyclization and oxidation of tetraphenylethene, microspheres can be used as an aqueous fluorescence ink with erasable properties. The fluorescent patterns printed by microsphere ink on paper can be irreversibly erased by prolonged exposure to ultraviolet light (365 nm, 60 mw/cm2). Moreover, the multi-morphology microspheres can be further arranged for multiple-information encryption and anti-counterfeiting of barcodes and two-dimensional codes, in which double validation was carried out through fluorescence spectroscopy and laser confocal microscopy. This approach provides a new method for more reliable anti-counterfeiting and information encryption.