MATEC Web of Conferences (Jan 2020)

Electron Beam Cold Hearth Melted Titanium Alloys and the Possibility of Their Use as Anti-Ballistic Materials

  • Markovsky P.E.,
  • Bondarchuk V.I.,
  • Akhonin S.V.,
  • Berezos A.V.

DOI
https://doi.org/10.1051/matecconf/202032111036
Journal volume & issue
Vol. 321
p. 11036

Abstract

Read online

Three commercial titanium alloys: two-phase α+β Ti-6Al-4V (low alloyed), and T110 (Ti-5.5Al-1.5V-1.5Mo-4Nb-0.5Fe, higher-alloyed), and β-metastable Ti-1.5Al-6.8Mo-4.5Fe were melted using EBCHM approach in the form of 100 mm in diameter ingots with the weight of about 20 kg each. After 3D hot pressing at single β-field temperatures ingots were rolled at temperatures below β-transus onto plates with thickness varying from 3 mm to 25 mm. Different heat treatments, including annealing at α+β or β-field temperatures, and special strengthening Surface Rapid Heat Treatment (SRHT) which after final aging provided special gradient microstructure with a hardened surface layer over ductile basic core, were employed. Mechanical properties were studied with tensile and 3-point flexure tests. It was established that the best combination of tensile strength and ductility in all alloys studied was obtained after SRHT, whereas at 3-point flexure better characteristics were obtained for the materials annealed at temperatures of (α+β)-field. At the same time, ballistic tests made at a certified laboratory with different kinds of ammunition showed essential superiority of plates having upper layers strengthened with SRHT. The effect of microstructure of the alloys, plate thickness and type of used ammunition on ballistic resistance is discussed.