Poultry Science (Jun 2020)
Research Note: Comparative gastrointestinal, tibia, and plasma attributes in 48-day-old fast- and slow-growing broiler chicken strains1
Abstract
Emerging market differentiation for broiler meat from strains exhibiting a range of growth rates is necessitating comparative research on various physiological and production aspects of these strains. The objective of the present study was to compare select gastrointestinal, tibial, and plasma attributes in a sample of 48-day-old (50 male and 50 female) broilers obtained from fast-and slow-growing flocks maintained under similar feed and management regimens. Eight birds were randomly selected from a fast (B; representative of modern commercial strains) and each of the 4 slow-growing strains (SG; D, H, M, and E). The strains differed by estimated time to reach 2.2 kg bodyweight corresponding to 36, 50, 42, 44, and 50 D for B, D, H, M, and E, respectively. Blood samples were collected to determine plasma metabolites, and birds were subsequently euthanized, weighed, and necropsied for gizzard and small intestine weight, jejunal tissue for histomorphology, ceca digesta samples for concentration of short-chain fatty acids (SCFA) and left tibia for ash content. Gizzard was heavier (P 0.05) strain differences on SCFA, jejunal villus height and crypt depth, plasma proteins, and electrolytes. Strains D, H, and M exhibited higher (P = 0.01) tibia ash concentration than B; E was intermediate and not different (P > 0.05) from any strain. Specifically, the tibia ash for B, D, H, SG 3, and E were 1.24, 1.44, 1.43, 1.49, and 1.39 g/kg BW, respectively. The B birds showed higher (P < 0.01) plasma concentrations of aspartate transaminase, creatine kinase, lactate dehydrogenase, and creatinine than SG strains. In conclusion, although B and some SG strains had lighter gastrointestinal tract indicative of energy efficiency, higher circulating plasma enzymes in B birds suggested impaired hepatic function. Moreover, lower tibia ash in B suggested disproportionate body mass relative to skeletal support.