Scientific Reports (Apr 2017)

Interfacial chemical bonding-mediated ionic resistive switching

  • Hyeongjoo Moon,
  • Vishal Zade,
  • Hung-Sen Kang,
  • Jin-Woo Han,
  • Eunseok Lee,
  • Cheol Seong Hwang,
  • Min Hwan Lee

DOI
https://doi.org/10.1038/s41598-017-01493-x
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 10

Abstract

Read online

Abstract In this paper, we present a unique resistive switching (RS) mechanism study of Pt/TiO2/Pt cell, one of the most widely studied RS system, by focusing on the role of interfacial bonding at the active TiO2–Pt interface, as opposed to a physico-chemical change within the RS film. This study was enabled by the use of a non-conventional scanning probe-based setup. The nanoscale cell is formed by bringing a Pt/TiO2-coated atomic force microscope tip into contact with a flat substrate coated with Pt. The study reveals that electrical resistance and interfacial bonding status are highly coupled together. An oxygen-mediated chemical bonding at the active interface between TiO2 and Pt is a necessary condition for a non-polar low-resistance state, and a reset switching process disconnects the chemical bonding. Bipolar switching mode did not involve the chemical bonding. The nature of chemical bonding at the TiO2-metal interface is further studied by density functional theory calculations.