Tecnura (Nov 2015)
Inverse optimal control as an alternative to regulate a Boost DC-DC power converter
Abstract
This article presents the application of the fundamental theory of the inverse optimal control problem for regulation of the output voltage in a Boost DC-DC power converter. The inverse optimal control problem states a priori an optimal control law and a posteriori it proposes the functional cost to be minimized, avoiding the explicit solution of the Hamilton-Jacobi-Bellman equation and, therefore, making easier the solution of the optimal control problem. Some analytical developments are shown here to obtain mathematical expressions needed to perform the inverse optimal control approach on regulation of the output voltage in a Boost power converter circuit under the influence of external disturbances. Numerical routines performed in MATLAB® have shown promising results of the proposed technique by achieving annihilation of the perturbation effect in the system´s model. Future work is focused on experimental verification of this approach on a real prototype of the DC-DC converter.
Keywords