BMC Research Notes (Feb 2011)

Gene expression profiling of oxidative stress response of <it>C. elegans </it>aging defective AMPK mutants using massively parallel transcriptome sequencing

  • Baillie David L,
  • Fejes Anthony P,
  • Lee Hyojin,
  • Shin Heesun,
  • Koo Hyeon-Sook,
  • Jones Steven JM

DOI
https://doi.org/10.1186/1756-0500-4-34
Journal volume & issue
Vol. 4, no. 1
p. 34

Abstract

Read online

Abstract Background A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the C. elegans homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an intracellular fuel sensor that regulates cellular energy homeostasis and functions in stress resistance and lifespan extension. Findings Here, we investigated global transcriptional responses of aak-2 mutants to oxidative stress and in turn identified potential downstream targets of AAK-2 involved in stress resistance in C. elegans. We employed massively parallel Illumina sequencing technology and performed comprehensive comparative transcriptome analysis. Specifically, we compared the transcriptomes of aak-2 and wild type animals under normal conditions and conditions of induced oxidative stress. This research has presented a snapshot of genome-wide transcriptional activities that take place in C. elegans in response to oxidative stress both in the presence and absence of AAK-2. Conclusions The analysis presented in this study has enabled us to identify potential genes involved in stress resistance that may be either directly or indirectly under the control of AAK-2. Furthermore, we have extended our current knowledge of general defense responses of C. elegans against oxidative stress supporting the function for AAK-2 in inhibition of biosynthetic processes, especially lipid synthesis, under oxidative stress and transcriptional regulation of genes involved in reproductive processes.