Scientific Reports (May 2021)

Hyperradiance by a stream of phase-correlated atomic dipole pairs traversing a high-Q cavity

  • Junseok Han,
  • Jinuk Kim,
  • Seung-hoon Oh,
  • Gibeom Son,
  • Junseo Ha,
  • Kyungwon An

DOI
https://doi.org/10.1038/s41598-021-90669-7
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Hyperradiance in which radiation rate exceeds that of superradiance has been theoretically investigated in various coherently-coupled emitter-field systems. In most cases, either proposed setups were experimentally challenging or the mean photon number in a cavity was limited. In this paper, with numerical simulations and analytic calculations, we demonstrate that significant hyperradiance with a large mean photon number can occur in a microlaser system, where pairs of two-level atoms prepared in quantum superposition states traverse a high-Q cavity in the presence of a pump field intersecting the cavity mode. Hyperradiance is induced when the intracavity-pump Rabi frequency is out of phase with respect to the atom-cavity coupling so that the reduction of atomic polarization by the atom-cavity coupling is compensated by the pump Rabi frequency in the steady state to maximize atomic photoemission.