Effect of chlorantraniliprole on soil bacterial and fungal diversity and community structure
Qian Tang,
Pingping Wang,
Huijun Liu,
Decai Jin,
Xiangning Chen,
Lifei Zhu
Affiliations
Qian Tang
Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
Pingping Wang
Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
Huijun Liu
Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China; Corresponding author.
Decai Jin
Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
Xiangning Chen
Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China; Corresponding author.
Lifei Zhu
Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
Chlorantraniliprole (CAP) is an insecticide with low toxicity and high efficiency, which is widely used in agriculture in China. However, its potential ecological risks remain unknown. In this study, we investigated the impact of different CAP concentrations on bacterial and fungal communities in soil based on high-throughput sequencing. The results showed that CAP application had no significant effect on soil bacterial and fungal diversity, but altered the bacterial and fungal community structure. In particular, the soil bacterial and fungal community structure in the low CAP concentration treatment group exhibited large variability. Compared with 0 day, the phylum level of bacteria changed at 115 days, and fungi changed at 175 days, indicating that soil microbial community might have significant correlation with CAP degradation in soil. Correlation analysis between soil properties and microbial communities showed that TN, TP, and NO3–N were three key factors that significantly influenced microbial community structure. These results provide basic data for studying the effects of pesticides on ecosystem and potential remediation strategies of polluted soil.