Energies (Mar 2021)

Synergistic Catalytic Effect of Sulphated Zirconia—HCl System for Levulinic Acid and Solid Residue Production Using Microwave Irradiation

  • George Hurst,
  • Juan Maria González-Carballo,
  • Lubomira Tosheva,
  • Silvia Tedesco

DOI
https://doi.org/10.3390/en14061582
Journal volume & issue
Vol. 14, no. 6
p. 1582

Abstract

Read online

The synergistic conversion of Miscanthus xGiganteous with sulphated zirconia and dilute hydrochloric acid was investigated. The sulphated zirconia was prepared using H2SO4 impregnation and characterised using X-ray Diffraction (XRD), Energy-dispersive X-ray (EDX), Scanning Electron Miscroscope (SEM) spectroscopy and nitrogen adsorption–desorption measurements. The microwave-assisted reaction was evaluated at various temperatures, reaction times and catalyst-to-biomass ratios, with and without the presence of trace HCl in the solution medium for the conversion of Miscanthus xGiganteous to levulinic acid. The highest levulinic acid yield of 63.8% was achieved at 160 °C, 80 min and a 2:1 catalyst-to-biomass ratio, with 10 mM HCl. The catalyst recyclability was investigated with and without calcination, finding that significant humin deposition on the catalyst surface likely caused catalyst deactivation. The post-reaction solid residue was also characterised using SEM, EDX, XRD, elemental composition and nitrogen adsorption–desorption measurements. Findings indicate that this residue could potentially be used as a soil amendment or as a fuel source. The synergistic conversion of real lignocellulosic biomass with sulphated zirconia and trace hydrochloric acid showed remarkable promise and should be investigated further.

Keywords