Journal of Experimental and Molecular Biology (Feb 2019)
THE EFFECT OF ZnO NANOPARTICLES ON THE ACTIVITY OF ANTIOXIDANT ENZYMES AND CAROTENOID CONTENT AT RHODOSPORIDIUM TORULOIDES CNMN-Y-30 YEAST
Abstract
The present research paper provides new information on the influence of ZnO nanoparticles (ZnO NPs) of size <50 nm and <100 nm on Rhodosporidium toruloides CNMN-Y-30 pigmented yeast. It was established that the activity of antioxidant enzymes such as catalase, superoxide dismutase and content of carotenoid pigments in the studied strain has been modified depending on the size and concentrations of NPs. There were no significant differences between the activity of antioxidant enzymes and content of carotenoid pigments in experimental group and control at the use of significantly low concentration of ZnO NPs. The use of nanoparticles in concentration of 30 mg/l caused a decrease in activity of antioxidant enzyme catalase and contributed to the increase in the activity of superoxide dismutase. This study has revealed that the concentration of 30 mg/L of ZnO NPs initiates an significant decrease in the content of carotenoid pigments - β-carotene, torulene and torularhodin in cell biomass. The results provided opportunities for modeling cell cycle processes and highlighting of carotenoid pigments and antioxidant enzymes as parameters for determining the mode of action of nanoparticles.