PLoS ONE (Jan 2015)

Novel loci for non-syndromic coarctation of the aorta in sporadic and familial cases.

  • Julia Moosmann,
  • Steffen Uebe,
  • Sven Dittrich,
  • André Rüffer,
  • Arif B Ekici,
  • Okan Toka

DOI
https://doi.org/10.1371/journal.pone.0126873
Journal volume & issue
Vol. 10, no. 5
p. e0126873

Abstract

Read online

BACKGROUND:Coarctation of the aorta (CoA) accounts for 5-8% of all congenital heart defects. CoA can be detected in up to 20% of patients with Ullrich-Turner syndrome (UTS), in which a part or all of one of the X chromosomes is absent. The etiology of non-syndromic CoA is poorly understood. In the present work, we test the hypothesis that rare copy number variation (CNV) especially on the gonosomes, contribute to the etiology of non-syndromic CoA. METHODS:We performed high-resolution genome-wide CNV analysis using the Affymetrix SNP 6.0 microarray platform for 70 individuals with sporadic CoA, 3 families with inherited CoA (n=13) and 605 controls. Our analysis comprised genome wide association, CNV burden and linkage. CNV was validated by multiplex ligation-dependent probe amplification. RESULTS:We identified a significant abundance of large (>100 kb) CNVs on the X chromosome in males with CoA (p=0.005). 11 out of 51 (~ 22%) male cases had these large CNVs. Association analysis in the sporadic cohort revealed 14 novel loci for CoA. The locus on 21q22.3 in the sporadic CoA cohort overlapped with a gene locus identified in all familial cases of CoA (candidate gene TRPM2). We identified one CNV locus within a locus with high multipoint LOD score from a linkage analysis of the familial cases (SEPT9); another locus overlapped with a region implicated in Kabuki syndrome. In the familial cases, we identified a total of 7 CNV loci that were exclusively present in cases but not in unaffected family members. CONCLUSION:Of all candidate loci identified, the TRPM2 locus was the most frequently implicated autosomal locus in sporadic and familial cases. However, the abundance of large CNVs on the X chromosome of affected males suggests that gonosomal aberrations are not only responsible for syndromic CoA but also involved in the development of sporadic and non-syndromic CoA and their male dominance.