Methods in Ecology and Evolution (Sep 2023)

Tracking marine tetrapod carcasses using a low‐cost mixed methodology with GPS trackers, passive drifters and citizen science

  • Maurício Tavares,
  • Paulo Henrique Ott,
  • Márcio Borges‐Martins

DOI
https://doi.org/10.1111/2041-210X.14177
Journal volume & issue
Vol. 14, no. 9
pp. 2354 – 2361

Abstract

Read online

Abstract Drift experiments are essential to understand stranding patterns and estimate the mortality of beached animals. Most studies do not use telemetry technology due to the high costs of this methodology. The objective of this paper is to describe the possibilities of tracking marine tetrapod carcasses with a low‐cost and replicable methodology. The study was carried out on the Southern Subtropical Shelf (~28°–34°S), a highly productive and key ecological region of the southwestern Atlantic Ocean (SWA). We designed and tested a low‐cost mixed methodology that includes Global Positioning System trackers, passive drifters (reused glass bottles) and Citizen Science (through an instant message platform and email) to track carcasses of marine tetrapods. We conducted four drift experiments during the four seasons of 2019. We released 787 drifters (600 nonbiological and 187 carcasses of seabirds, sea turtles, and cetaceans) at sea, at five equally separated distances (5–25 km) from the coast. Beach surveys and citizen science were implemented to recover the beached drifters. We recovered 71.83% of non‐biological drifters and 27.27% of carcasses released. We tracked the movements of 38 carcasses (25 sea turtles and 13 cetaceans) with 17 GPS devices. The drifting time, until reaching the beach, ranged from 12 h to 17 days for carcasses and 12 h to 406 days for bottles. Citizen Science was the most important source of recovery of nonbiological drifters, representing 66.67% of the total recovered bottles. For carcasses, active search was the most important recovery source, representing 64.7% of the total carcasses recovered. Our study contributes with new findings on marine tetrapod drift patterns in the SWA and describes an accessible low‐cost mixed methodology for small and medium‐budget projects that can be replicated in other coastal regions of the world for tracking a wide range of marine tetrapod species.

Keywords