Molecules (Jul 2023)

Improved Viability of Probiotics via Microencapsulation in Whey-Protein-Isolate-Octenyl-Succinic-Anhydride-Starch-Complex Coacervates

  • Qingqing Liu,
  • Chutian Lin,
  • Xue Yang,
  • Shuwen Wang,
  • Yunting Yang,
  • Yanting Liu,
  • Mingming Xiong,
  • Yisha Xie,
  • Qingbin Bao,
  • Yongjun Yuan

DOI
https://doi.org/10.3390/molecules28155732
Journal volume & issue
Vol. 28, no. 15
p. 5732

Abstract

Read online

The aim of this study was to microencapsulate probiotic bacteria (Lactobacillus acidophilus 11073) using whey-protein-isolate (WPI)–octenyl-succinic-anhydride-starch (OSA-starch)-complex coacervates and to investigate the effects on probiotic bacterial viability during spray drying, simulated gastrointestinal digestion, thermal treatment and long-term storage. The optimum mixing ratio and pH for the preparation of WPI-OSA-starch-complex coacervates were determined to be 2:1 and 4.0, respectively. The combination of WPI and OSA starch under these conditions produced microcapsules with smoother surfaces and more compact structures than WPI-OSA starch alone, due to the electrostatic attraction between WPI and OSA starch. As a result, WPI-OSA-starch microcapsules showed significantly (p p < 0.05) better protection during simulated gastrointestinal digestion, heating (65 °C/30 min and 75 °C/10 min) and storage (4/25 °C for 12 weeks) than WPI-OSA-starch microcapsules. These results demonstrated that WPI-OSA-starch-complex coacervates have excellent potential as a novel wall material for probiotic microencapsulation.

Keywords