Scientific Reports (Jan 2021)

Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying

  • Tianhao Wang,
  • Shivakant Shukla,
  • Bharat Gwalani,
  • Subhasis Sinha,
  • Saket Thapliyal,
  • Michael Frank,
  • Rajiv S. Mishra

DOI
https://doi.org/10.1038/s41598-021-81350-0
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Tuning deformation mechanisms is imperative to overcome the well-known strength-ductility paradigm. Twinning-induced plasticity (TWIP), transformation-induced plasticity (TRIP) and precipitate hardening have been investigated separately and have been altered to achieve exceptional strength or ductility in several alloy systems. In this study, we use a novel solid-state alloying method—friction stir alloying (FSA)—to tune the microstructure, and a composition of a TWIP high-entropy alloy by adding Ti, and thus activating site-specific deformation mechanisms that occur concomitantly in a single alloy. During the FSA process, grains of the as-cast face-centered cubic matrix were refined by high-temperature severe plastic deformation and, subsequently, a new alloy composition was obtained by dissolving Ti into the matrix. After annealing the FSA specimen at 900 °C, hard Ni–Ti rich precipitates formed to strengthen the alloy. An additional result was a Ni-depleted region in the vicinity of newly-formed precipitates. The reduction in Ni locally reduced the stacking fault energy, thus inducing TRIP-based deformation while the remaining matrix still deformed as a result of TWIP. Our current approach presents a novel microstructural architecture to design alloys, an approach that combines and optimizes local compositions such that multiple deformation mechanisms can be activated to enhance engineering properties.